Sustainability Data and Analytics in Cloud-Based M2M Systems

نویسندگان

  • Hong Linh Truong
  • Schahram Dustdar
چکیده

Recently, cloud computing technologies have been employed for largescale machine-to-machine (M2M) systems, as they could potentially offer better solutions for managing monitoring data of IoTs (Internet of Things) and supporting rich sets of IoT analytics applications for different stakeholders. However, there exist complex relationships between monitored objects, monitoring data, analytics features, and stakeholders that require us to develop efficient ways to handle these complex relationships to support different business and data analytics processes in large-scale M2M systems. In this chapter, we analyze potential stakeholders and their complex relationships to data and analytics applications in M2M systems for sustainability governance. Based on that we present techniques for supporting M2M data and process integration, including linking and managing monitored objects, sustainability monitoring data and analytics applications, for different stakeholders who are interested in dealingwith large-scalemonitoring data inM2Menvironments. We present a cloud-based data analytics system for sustainability governance that includes a Platform-as-a-Service and an analytics framework. We also illustrate our prototype based on a real-world cloud system for facility monitoring and analytics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Big Data Analytics in Power Distribution Network

Smart grid enhances optimization in generation, distribution and consumption of the electricity by integrating information and communication technologies into the grid. Today, utilities are moving towards smart grid applications, most common one being deployment of smart meters in advanced metering infrastructure, and the first technical challenge they face is the huge volume of data generated ...

متن کامل

MELA: elasticity analytics for cloud services

While cloud computing has enabled applications to be designed as elastic cloud services, there is a lack of tools and techniques for monitoring and analysing their elasticity at multiple levels, from the service level to the underlying virtual infrastructure. In this paper, we focus on monitoring and evaluating elasticity of cloud services, crucial for supporting users and automatic elasticity ...

متن کامل

On Designing a Generic Framework for Cloud-based Big Data Analytics

Big data analytics has gathered immense research attention lately because of its ability to harness useful information from heaps of data. Cloud computing has been adjudged as one of the best infrastructural solutions for implementation of big data analytics. This research paper proposes a five-layer model for cloud-based big data analytics that uses dew computing and edge computing concepts. B...

متن کامل

Attribute-based Access Control for Cloud-based Electronic Health Record (EHR) Systems

Electronic health record (EHR) system facilitates integrating patients' medical information and improves service productivity. However, user access to patient data in a privacy-preserving manner is still challenging problem. Many studies concerned with security and privacy in EHR systems. Rezaeibagha and Mu [1] have proposed a hybrid architecture for privacy-preserving accessing patient records...

متن کامل

A Genetic Based Resource Management Algorithm Considering Energy Efficiency in Cloud Computing Systems

Cloud computing is a result of the continuing progress made in the areas of hardware, technologies related to the Internet, distributed computing and automated management. The Increasing demand has led to an increase in services resulting in the establishment of large-scale computing and data centers, in addition to high operating costs and huge amounts of electrical power consumption. Insuffic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014